‘기능성 탄소 보호층’을 통한 차세대 고성능 리튬-황 전지 개발
기능성 탄소 보호층 (PCL)의 도입에 따른 금속 나노 입자의 표면 안정성 향상과 전자교환 현상을 통한 질소 원자의 전자구조 변화 유도 모식도 (왼쪽). 기능성 탄소 보호층이 없는 경우, 금속 나노 입자 표면에서 발생하는 상변화 및 부반응 모식도 (오른쪽). (자료제공: KAIST)
(왼쪽부터) 생명화학공학과 이진우 교수, 서울대학교 한정우 교수. (자료제공: KAIST)
한국과학기술원(KAIST, 총장 이광형)은 생명화학공학과 이진우 교수 연구팀이 서울대학교 한정우 교수 연구팀, LG 에너지솔루션 미래기술연구센터와 공동연구를 통해 차세대 고성능 리튬-황 전지를 개발하는데 성공했다고 3월 11일 밝혔다.
리튬-황 전지는 차세대 이차전지 후보군 중 하나로, 상용 리튬이온전지에 사용되고 있는 양극 소재에 비해 황이 가볍고 가격이 저렴하면서도 많은 양의 에너지를 한 번에 저장할 수 있어, 무인기 및 드론과 같이 가볍고 오래 작동될 수 있는 응용분야에 필요한 핵심 기술로 손꼽히고 있다.
하지만, 실질적으로 높은 수준의 에너지 밀도를 지닌 리튬-황 전지를 개발하기 위해서는 전지 내부에 들어가는 무거운 전해액의 사용량을 줄여야 하는데, 전해액 양이 줄어들면 양극에서 발생하는 황의 전기화학적 반응성이 대폭 줄어들어 높은 에너지를 지닌 리튬-황 파우치셀을 구현하는데 어려움이 있다.
이진우 교수 연구팀은 이번 연구를 통해 리튬황전지 양극에 추가되어 황의 전기화학적 반응성을 개선해줄 수 있는 금속 나노입자의 표면에 얇은 기능성 탄소 보호층을 도입함으로써, 양극에서 발생하는 황의 전기화학 전환 반응의 반응성과 수명 안정성을 대폭 향상시키는데 성공하였다. 이 탄소 보호층은 반응 생성물인 리튬 폴리설파이드와 금속 나노입자 간의 직접적인 접촉을 차단해 기존에 발생했던 부반응 및 상변화를 예방하여 수명을 크게 향상시킬 수 있다.
또한, 해당 탄소 보호층은 전자 전달에 도움이 되는 질소 원자가 첨가되어 있어, 금속 나노입자와의 전자교환이 원활히 이루어진다. 금속 입자의 종류를 제어함으로써, 탄소 보호층 내의 질소 원자의 최적화된 전자구조를 유도함으로써, 양극 반응성 또한 크게 향상시킬 수 있다.
이번 연구에서 개발된 기능성 탄소 보호층을 양극 첨가제에 활용함으로써, A h 수준의 리튬-황 파우치셀에서 400 W h kg-1 수준의 에너지 밀도(전지의 단위 무게 당 저장할 수 있는 총 에너지 양)를 확보하는 성과를 거뒀다. 더욱이, 기능성 탄소 보호층 합성법이 간단하면서도 대량화에 적합해, 향후 적절한 후속 연구를 통해 리튬-황 전지 산업 분야에서 활용될 가능성도 열려있다.
이진우 교수는 “차세대 고성능 리튬-황 전지 개발을 위해서는 전지 내부에 제한된 전해액 사용량에도 황 전환 반응의 속도와 수명 안정성을 모두 높은 수준으로 확보하는게 핵심”이라며 “양극 기능성 소재의 전자구조 최적화 및 표면 안정성을 제어할 수 있는 기술을 개발하려는 노력이 지속되어야 한다”고 설명했다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 2월 14일 온라인판에 게재됐다.
[Ceramic Korea (세라믹뉴스)=이광호 ]
기사를 사용하실 때는 아래 고유 링크 주소를 출처로 사용해주세요.
https://www.cerazine.net